郑 洋

工学博士 材料物理与化学 教授


教育与工作经历

2018.10 ~ 今:          武汉科技大学材料与冶金学院,教授

2014.12 ~ 2018.06:澳大利亚伍伦贡大学 材料科学与工程,博士

2010.09 ~ 2013.06:中南民族大学, 物理化学,硕士

2006.09 ~ 2010.06:黄冈师范学院,化学,本科


联系方式

邮箱:  yzheng@wust.edu.cn; yangzheng87@hotmail.com

地址: 武汉市青山区和平大道947号 武汉科技大学 钢铁楼 912室,邮编:430081


undefined


个人简介

郑洋,博士,教授,20186月毕业于澳大利亚伍伦贡大学(University of Wollongong)工学院,2018年10月由武汉科技大学引进回国,任职于材料与冶金学院/耐火材料与冶金国家重点实验室。一直专注于能源储存与转换材料的可控设计、制备、表征及应用,并结合先进的同步辐射技术进行电化学机理方面的研究,如锂//钾离子电池等。多次参与在澳大利亚核科学与技术组织(Australian Nuclear Science and Technology Organisation)和澳大利亚同步辐射研究中心(Australian Synchrotron)等机构开展的原位同步辐射测试项目,为澳大利亚同步辐射中心注册成员,具备同步辐射测试许可及使用条件。在储能材料理论及应用研究方面取得了一系列创新性的科研成果,先后在Adv. Mater., Angew. Chem. Int. Ed., Energy Environ. Sci., Adv. Energy Mater.  等国际权威期刊上发表SCI论文30多篇,其中入选ESI高被引论文8篇,热点论文2篇,被SCI引用超过2000多次,申请中国发明专利4项,授权发明专利2项,获2018年度国家优秀自费留学生奖学金,主持国家自然科学基金等项目,先后入选湖北省及武汉市人才计划


研究领域

1.  电化学储能技术(锂/钠/钾离子电池、锂硫电池)

2.  催化材料


研究项目

1. 国家自然科学基金青年项目,二维SnSxSe1-x/石墨烯叠层超结构的设计合成及储钠机制研究(52002297),24万,2021.01–2023.12,主持。

2. 武汉科技大学高层次人才科研启动基金,40万,2019,主持。

3. 武汉市科技计划项目,高比能锂离子电池硅碳负极材料的设计、绿色宏量制备和应用研究(2020010601012199),50万,2020.08–2022.12,主要参与。

4. 湖北省创新群体项目,高性能过渡金属氮化物电极材料的设计合成和储能机理(2019CFA020),20万,2020.01–2022.12,主要参与。

5. 企业项目,高性能锂硫电池正极材料研究(DH1010004),200万,2019–2020,主要参与。


代表性论文

1. Rational Design of Core-Shell ZnTe@N-Doped Carbon Nanowires for High Gravimetric and Volumetric Alkali Metal Ion Storage. Adv. Funct. Mater., 2020, 2006425. (IF=15.621

2. In Situ Formation of N-Doped Carbon-Coated Porous MoP Nanowires: A Highly Efficient Electrocatalyst for Hydrogen Evolution Reactionin a Wide pH Range. Appl. Catal. B-Environ., 2020, 263, 118358. (IF=14.229, 引用: 7次) 

3. Structural Engineering of Hierarchical Micronanostructured Ge–C Framework by Controlling the Nucleation for Ultralong-Life Li Storage. Adv. Energy Mater., 2019, 9, 1900081. (IF=24.884, 引用: 44次) 

4. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci., 2018, 11, 2310–2340. (IF=33.25, 引用: 245次, ESI高被引论文/热点论文)  

5. Atomic Interface Engineering and Electric-Field Effect in Ultrathin Bi2MoO6 Nanosheets for Superior Lithium Ion Storage. Adv. Mater., 2017, 29, 1700396. (IF=25.809, 引用: 180次, ESI高被引论文

6. Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. Angew. Chem. Int. Ed., 2016, 55, 3408–3413. (IF=12.257, 引用: 416次, ESI高被引论文/热点论文

7. Hydrogen peroxide assisted rapid synthesis of TiO2 hollow microspheres with enhanced photocatalytic activity. Appl. Catal. B-Environ., 2014, 147, 789–795. (IF=14.229, 引用: 43次) 

8. W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 2019, 16, 535–544. (IF=16.280, 引用: 37次, ESI高被引论文

9. CoS Quantum Dot Nanoclusters for High-Energy Potassium-Ion Batteries. Adv. Funct. Mater., 2017, 1702634. (IF=15.621, 引用: 229次, ESI高被引论文

10. Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor-Redistribution for High-Energy Sodium-Ion Batteries. Adv. Energy Mater., 2016, 6, 1601037. (IF=24.884, 引用: 162次, ESI高被引论文

11. Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A, 2018, 6, 3284–3303. (IF=10.733, 引用: 113次, ESI高被引论文

12. Surface Engineering and Design Strategy for Surface-Amorphized TiO2@Graphene Hybrids for High Power Li-Ion Battery Electrodes. Adv. Sci., 2015, 2, 1500027. (IF=15.804, 引用: 129次, ESI高被引论文)