常帅 教授 (团队负责人)

理学博士 材料科学与工程 教授


                                                       


                                                       

教育与工作经历

2016- 武汉科技大学 教授,博士生导师

2012-2015 [美国]斯坦福大学电子工程系       博士后

2007-2012 [美国]亚利桑那州立大学       物理系 博士

2003-2007 复旦大学物理系 学士


                                                           

联系方式

电话: +86 (027)       68862129  邮箱: schang23@wust.edu.cn

地址: 武汉市青山区和平大道947号 武汉科技大学 钢铁楼 910室,邮:430081


undefined


 

研究兴趣

常帅,2016年受聘为我校青年人才专家,担任材料与冶金学院教授。长期从事纳米生物技术的交叉学科研究工作,研究方向主要包括单分子电导、DNA测序、纳米电极研究、纳米材料的电学、力学特性等。自2009年以来,在分子电子学、生物物理、物理化学等领域做出了一系列创新性的工作,尤其在基因测序的应用方面有突破性贡献。其自主研发的“识别隧道电流技术”可以精确地识别多种不同DNA碱基、RNA、氨基酸以及糖分子,是世界上第一个利用电学方法检测基因序列及其他重要生物大分子序列的测量技术。研究成果多次发表在包括Nature NanotechnologyNano LettersJACSPNAS等国际知名学术期刊上;授权专利及软件著作权12项,一项美国专利已被罗氏(Roche)公司购买并投入应用;主持国家自然基金青年基金一项。入校期间自主搭建了世界上第一个专门用于测量单分子导电性的精准测量平台——“单分子识别隧道电流仪”,检测精度远远超过其他相关的商用测量仪器,具有重大的发展潜力,有望为我国生物、医学、纳米科技等技术领域带来重大发展。常帅团队积极探索纳米材料、分子电子学、基因测序、生物传感器等领域的研究与应用,为我校材料、化学、物理学交叉学科方向上的科研工作增添了新的优势和特色。


研究方向

单分子检测与识别;新一代基因测序的纳米技术开发与应用

 

承担项目

1.     基于“识别隧道电流”技术进行DNA测序的纳米笔.  国家自然科学基金(主持人:常帅)(批准号:21705122),2018.1-2020.12


参与项目

l   美国国家卫生研究院(NIH),2011-2015Instrument to Optimize DNA         sequencing by recognition tunneling408.4万美元,已结题。

l   美国国家卫生研究院(NIH),2010-2011Tunnel Junction for         reading all four bases with high discrimination86.9万美元,已结题。

 

课题组学生

余蕾,张明阳,陈海舰,肖博怀,黄明柱,周疆豪,程鹏坤,王哲,陈晨,李仁涵,王治业



研究成果


                       

2018

·     Xiao B. H., Liang F., Liu S. M., Im J., Li Y. C., Liu J., Zhang B. T., Zhou J., He J. and Chang S. Cucurbituril mediated single molecule detection and identification via recognition tunneling. Nanotechnology 2018, 08 Jun 2018, 29(36):365501, doi: 10.1088/1361-6528/aacb63.

·      Pandey P., Panday N., Chang S., Pang P., Garcia J.,Wang X. W., Fu Q. and He J. Probing Dynamic Events of Dielectric Nanoparticles by a Nanoelectrode-Nanopore Nanopipette. ChemElectroChem 2018, published online, doi: 10.1002/celc.201800163.

·      Guo J., Pan J., Chang S., Wang X., Kong N., Yang W., and He J. Monitoring the Dynamic Process of Formation of Plasmonic Molecular Junctions during Single Nanoparticle Collisions. Small 2018, 14, 1704164.

 

Before 2017

·      Gupta, C.; Walker, R. M.; Chang, S.; et al. Quantum Tunneling Currents in a Nanoengineered Electrochemical System. J. Phys. Chem. C. 2017, 121, 15085-15105.

·      Panday, N.; Qian, G. M.; Wang, X. W.; Chang, S.; et al. Simultaneous Ionic Current and Potential Detection of Nanoparticles by a Multifunctional Nanopipette. ACS Nano 2016, 10, 11237-11248.

·      Yuan, H.Y.; Chang, S.; Bargatin, I.; et al. Engineering Ultra-Low Work Function of Graphene. Nano Letters 2015, 15, 6475-6480.

·      Emaminejad, S.; Javanmard, M.; Gupta, C.; Chang, S.; et al. Tunable control of antibody immobilization using electric field. Proceedings of the National Academy of Sciences of the United States of America 2015, 112, 1995-1999.

·      Chang, S.; Sen, S. M.; Zhang, P. M.; et al. Palladium Electrodes for Molecular Tunnel Junctions. Nanotechnology 2012, 23, 425202-425206.

·      Chang, S.; Huang, S.; Liu, H.; et al. Chemical Recognition and Binding Kinetics in a Functionalized Tunnel Junction. Nanotechnology 2012, 23, 235101-235114.

·      Chang, S.; He, J.; Zhang, P. M.; et al. Gap Distance and Interactions in a Molecular Tunnel Junction. J. Am. Chem. Soc. 2011, 133, 14267-14269.

·      Huang, S.; He, J.; Chang, S.; et al. Identifying Single Bases in a DNA Oligomer with Electron Tunnelling. Nature Nanotechnology 2010, 5, 868-873.

·      Huang, S.; Chang, S.; He, J.; et al. Recognition Tunneling Measurement of the Conductance of DNA Bases Embedded in Self-Assembled Monolayers. J. Phys. Chem. C.2010, 114, 20443-20448.

·      Lindsay, S.; He, J.; Sankey, O.; Hapala, P.; Jelinek, P.; Zhang, P. M.; Chang, S.; Huang, S. Review: Recognition tunneling. Nanotechnology 2010, 21, 262001.

·       Chang, S.; Huang, S.; He, J.; et al. Electronic Signatures of all Four DNA Nucleosides in a Tunneling Gap. Nano Letters 2010, 10, 1070-1075.

·      Chang, S.; He, J.; Lin, L.S.; et al. Tunnel Conductance of Watson-Crick nucleoside-Base Pairs from Telegraph Noise. Nanotechnology 2009, 20, 7978-7984.

·    Chang, S.; He, J.; Kibel, A.; et al. Tunneling readout of hydrogen-bonding based recognition. Nature Nanotechnology  2009, 4, 297-301.