肖祎 特任教授(副研究员)

发布时间:2025-11-26 发布者:肖祎 浏览次数:


基本信息

姓名: 肖祎               

民族: .

籍贯: 四川,南充

单位:武汉科技大学冶金与能源学院,特任教授(副研究员

毕业院校:德国达姆施塔特工业大学(德国TU9精英联盟校)

学历: 理学博士 (材料科学与工程系)

单位:武汉科技大学-冶金与能源学院

(福建省ABC高层次人才海外引进人才C类;武汉科技大学香涛学者青年百人)

联系方式: 18180170631

电子邮箱: yixiao@wust.edu.cn.

通讯地址: 湖北省武汉市青山区和平大道947号武汉科技大学-冶金与能源学院钢铁楼908室; 邮编:430065。


教育背景

1. 2018.10 -- 2022.06

德国达姆施塔特工业大学, 理学博士材料科学系(材料物理)

2. 2015.09 -- 2016.11

韩国东国大学,博士(肄业),化学与生物化学工程系(化学工程)

3. 2011.09 to 2014.07

西南大学,理学硕士,化学化工学院(物理化学)

4. 2007.09 -- 2011.06

河北农业大学,理学学士,理学院(化学)


工作经历

2025.10--当前

武汉科技大学-冶金与能源学院,特任教授(副研究员)

2023.10--2025.10

中国科学研究院福建物质结构研究所,副研究员。

2022.09--2023.09

滑铁卢大学,机械与机械工程系,博后(合作)。

2017.07 -- 2018.09

南方科技大学,材料科学与工程系,研究助理。

2017.01 -- 2017-07

香港城市大学,物理与材料科学系,研究助理。

2014.09 -- 2015.09

四川省泸县第一中学,化学教师

研究兴趣

本人致力于电化学、电化学催化、能源化学过程原子分子层次机理研究和多尺度和跨尺度的理论计算模拟。通过建立和发展先进的原位研究方法,揭示电能源化学过程的反应机理和动力学。结合大数据、机器学习和人工智能,从理论角度解析催化机理、设计高活性催化剂,以及指导器件的构筑。通过进一步建立和发展先进的原位表征研究方法,揭示电能源化学过程的反应机理和动力学。结合大数据、机器学习和人工智能,从理论角度解析催化机理、设计高活性催化剂,以及指导器件的构筑。

科研成果

以第一/共一及通讯作者在包括:ACS Catalysis、Chem Eng J、Advanced Functional Materials、J Energy Chem、J Mater Sci Technol、Rare Metals、Appl Catal B-Environ、ACS Appl Mater Inter、Small、Chem Mater、Appl Surf Sci、Mater Today Phys、Mater Today Chem、Nanoscale等国际知名期刊上发表SCI学术论文近五十篇。同时与深圳大学、同济大学、山东大学等知名大学具有广泛的合作,在包括Chem Eng J、Adv Funct Mater、Adv Sci、Nat Commun、JACS、Adv Mater、和Adv Energy Mater等国际七十余篇。最近五年发表论文被引用1300余次,单篇影响因子>10的论文二十余篇,H-index为21,ESI高被引1篇(Highly Cited Papers, Top 1%)。


科研获奖:

(1)入选2024年福建省ABC高层次人才海外C类计划。

(2)荣获“2024年度中科院福建物质结构研究所职工考核优等次”。

(3) 入选武汉科技大学香涛学者青年百人计划

科研项目:

具有非常丰富的海外学习和工作经历,参与过德国研究基金会(DFG);德国物理学会(DPG)和欧洲研究委员会(ERC)等多项德国国家级科研项目。重点参与加拿大工程研究理事会(NSERC)和加拿大研究协会(CRC)等多项自然科学基金科研项目。同时参与和主持中国科学研究院福建物质结构研究所“人才计划”资助项目和主持武汉科技大学香涛青年百人高层次人才引进项目。

(1)主持武汉科技大学香涛青年学者高层次人才科研启动费。

(2)作为重要参与者参与由中科院福建物构所“人才计划”资助的催化剂的微观结构调控和性能研究项目。

(3)作为重要参与人参与由欧洲研究基金会European Research Council (ERC)和德国研究基金会Deutsche Forschungsgemeinschaft (DFG)资助的多个项目。

(4)此外作为重要参与者参与由加拿大自然科学与工程研究委员会(NSERC)资助多个项目。


学术实践

 与国内外课题组进行了广泛合作与交流,受邀参加国际会议做邀请报告10余次,担任数个优秀青年基金和福建省基金项目评审人,并受邀为ACS CatalysisChemical CommunicationJ. Mater. Chem. ACarbonChemistry of MaterialsNano Letters等多个SCI期刊审稿人。曾经受邀担任Chinese Chemcial LettersComputational Materials Science、自然科学进展、Energy & Fuel青年编委(Special Issue)

基本技能

第一性能专业软件: VASP, Materials Studio, VASPKIT, Gaussian.

机器语言: Fortran, Python.

操作系统: Linux, Windows.

办公软件: LATEX, XCrySDen, Mathematica, Matlab and Origin.



科研论文 (https://orcid.org/0000-0001-6318-8010)

第一作者

1. Xiao Y, Shen C, Zhang W, et al. Regulating CN coupling activity toward organonitrogen chemicals over CuAu subnanometer clusters on Au-modified Cu (111) facet with explicit H-water and induced cations electrical double-layer models[J]. Chemical Engineering Journal, 2025: 169359. (研究论文,SCI 一区Top期刊,IF13.1995)

2. Xiao Y, Yang X, Yang Y, et al. CuAg Alloy Catalyst for Modulating the Activity of C–N Coupling toward Acetamide and Urea Synthesis via Explicit pH-Dependent Water and Induced Ionic Liquid Cations Models[J]. ACS Catalysis, 2025, 15: 19552-19565. (研究论文,SCI 一区Top期刊,IF13.100)

3. Xiao Y*, Feng Y, Liu L, et al. Ions tuning interfacial reaction enhancing electrocatalytic activities of aromatic icosahedral [B12H6]2+ borane nanomaterials for synthesis of zingerone via vanillin upgrading in acid environment[J]. Chemical Engineering Science, 2025: 122338. (研究论文,SCI 二区Top期刊,IF4.2997)

4. Yi Xiao*, Liu L, Zhang W B, et al. A modeling strategy investigation for selective hydrodeoxygenation biomass upgrading of vanillin via metal supported on pyridinic and pyrrolic nitrogen-doped carbon catalysts[J]. Rare Metals, 2024: 1-13. (研究论文,SCI 一区Top期刊,IF11.008)

5. Xiao Y, Shen C, Sun C, et al. Screening Efficient C–N Coupling Catalysts for Electrosynthesis of Acetamide and Output Ammonia through a Cascade Strategy of Electrochemical CO2 and N2 Reduction Using Cu-Based Nitrogen–Carbon Nanosheets[J]. ACS Appl. Mater. Interfaces 2024, 16, 10, 12486–12499. (研究论文,SCI 二区期刊,IF9.4998)

6.Xiao Y*, Shen C, Xiong Z, et al. Electrocatalytic upgrading biomass approach to address oxidation of 5-(Hydroxymethyl) furfural using Mo2B2 MBene active surface[J]. Materials Today Physics, 2023, 35: 101122. (研究论文,SCI 二区期刊,IF11.0211)

7. Xiao Y*, Shen C, Xiong Z, et al. Comprehensive Study Addressing the Challenge of Efficient Electrocatalytic Biomass Upgrading of 5‐(Hydroxymethyl) Furfural (HMF) with a CH3NH2 Ionic Liquid on Metal‐Embedded Mo2B2 MBene Nanosheets[J]. Small, 2023: 2302271. (研究论文,SCI 二区Top 期刊,IF15.1536).

8. Xiao Y*, Shen C, Zhang W, et al. Electrocatalytic Biomass Upgrading of Furfural using Transition‐Metal Borides via Density Functional Theory Investigation[J]. Small, 2023, 19(9): 2205876. (研究论文,Top 期刊,IF15.1536)

9. Xiao Y*, Shen C, Xiong Z, et al.A Strategy to Address the Challenge of Electrochemical CO2 and N2 Coupling to Synthesis Urea on Two-Dimensional Metal Borides (MBenes) by Computational Screening[J]. Materials Today Physics, 2022: 100726. (研究论文,SCI 二区Top 期刊,IF11.0211)

10.Xiao Y*, Shen C, Zhang W B. Screening and prediction of metal-doped α-borophene monolayer for nitric oxide elimination[J]. Materials Today Chemistry, 2022, 25: 100958.  (研究论文,SCI 二区期刊,IF7.6128)

11. Xiao Y*, Shen C. Transition‐Metal Borides (MBenes) as New High‐Efficiency Catalysts for Nitric Oxide Electroreduction to Ammonia by a High‐Throughput Approach[J]. Small, 2021: 2100776. (研究论文,SCI 二区Top 期刊,IF15.1536)

12. Xiao Y*, Shen C, Long T.Theoretical Establishment and Screening of an Efficient Catalyst for N2 Electroreduction on Two-Dimensional Transition-Metal Borides (MBenes)[J]. Chemistry of Materials, 2021 33 (11), 4023-4034.  (研究论文,SCI 二区Top 期刊,IF10.5078)

13. Xiao Y*, Shen C, Hadaeghi N. Quantum Mechanical Screening of 2D MBenes for the Electroreduction of CO2 to C1 Hydrocarbon Fuels[J]. The Journal of Physical Chemistry Letters, 2021, 12(27): 6370-6382. (研究论文,SCI 二期刊,IF6.8883)

14. Xiao Y*, Zhang W. High throughput screening of M3C2 MXenes for efficient CO2 reduction conversion into hydrocarbon fuels[J]. Nanoscale, 2020, 12(14): 7660-7673. (研究论文,SCI 三区期刊,IF8.307)

15. Xiao Y*, Wang J, Wang Y, et al. A new promising catalytic activity on blue phosphorene nitrogen-doped nanosheets for the ORR as cathode in nonaqueous Li–air batteries[J]. Applied Surface Science, 2019, 488: 620-628. (研究论文,SCI 二区TOP 期刊,IF7.392)

16. Xiao Y*, et al. Adsorption mechanisms of Mo2CrC2 MXenes as potential anode materials for metal-ion batteries: A first-principles investigation[J]. Applied Surface Science, 2020: 145883. (研究论文,SCI 二区TOP 期刊,IF7.392)

17. Xiao Y*, Shen C, Chen R. Mechanistic Study of Efficient Producing CO2 Electroreduction via 2D Metal Organic Frameworks M3(HITP)2 Surface[J]. Electrochimica Acta, 2021: 138028. (研究论文,SCI 二区TOP 期刊,IF7.3364)

18. Xiao Y, Shen C. Predicted Electrocatalyst Properties on Metal Insulator MoTe2 for Hydrogen Evolution Reaction and Oxygen Reduction Reaction Application in Fuel Cells[J]. Energy & Fuels, 2021. (研究论文,SCI 三区,IF4.654).

19. Yi Xiao*, Li Tang, Weibin Zhang, Chen Shen. Theoretical Insighting for Efficient Energy Conversion with ORR and CO2RR via CuAu Surface. Computational Materials Science 192 (2021) 110402. (研究论文,SCI 三区IF3.5718).

20. Xiao Y*, Tang L. High-Throughput Approach Exploitation: Two-Dimensional Double-Metal Sulfide (M2S2) of Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells[J]. Energy & Fuels, 2020, 34(4): 5006-5015. (研究论文,IF4.654).

21. Xiao Y*, Zhang W. DFT analysis elementary reaction steps of catalytic activity for ORR on metal-, nitrogen-co-doped graphite embedded structure[J]. SN Applied Sciences, 2020, 2(2): 194. (研究论文,IF0)

22. Xiao Y*, Zhang W. High-Throughput Calculation Investigations on the Electrocatalytic Activity of Co-doped Single Metal–Nitrogen Embedded in Graphene for ORR Mechanism[J]. Electrocatalysis, 2020: 1-12.  (研究论文,IF2.933)

23. Xiao, Yi, et al. "The potential application of 2D Ti2CT2 (T= C, O and S) monolayer MXenes as anodes for Na-ion batteries: A theoretical study." Computational Materials Science 163 (2019): 267-277. (研究论文,IF3.5718)

24. Xiao Y*, Zhang F C, Han J I. Synthesis, characterization and lithium-ion migration dynamics simulation of LiFe1-xTxPO4 (T=Mn, Co, La and Ce) doping cathode material for lithium-ion batteries[J]. Applied Physics A, 2016, 122(11): 1-12. (研究论文,IF2.983)

25. Xiao Y, Zhang F C, Han J I. Electrical structures, magnetic polaron and lithium ion dynamics in three transition metal doped LiFe1− xMxPO4 (M= Mn, Co and La) cathode material for Li ion batteries from density functional theory study[J]. Solid State Ionics, 2016, 294: 73-81. (研究论文,IF3.699)

26. Xiao Y, Liu Y, Frederick N, et al. Ab initio study of the electronic structure, magnetic and dynamics properties in LiMO2 and NaMO2 (M=V and Cr) as electrode cathode material for batteries[J]. Solid State Ionics, 2017, 307: 26-34. (研究论文,IF3.699)

27. XIAO Y, FANG Y, LIU Y Z, et al. Theoretical Studies on the Hydrogen Bonds of Different Position Action Mechanisms of Thymine with Uracil[J]. Chinese Journal of Structural Chemistry, 2014. (研究论文,IF5.9003)

28. 肖祎, 方意, 刘玉震, . 核酸中碱基的氢键作用机理及电子特征理论研究[J]. 化学研究, 2014, 2 (中文核心)


共同第一作者

29. Xiong W, Zhang J, Xiao Y, et al. Oxygen-rich nanoflake-interlaced carbon microspheres for potassium-ion battery anodes [J]. Chemical Communications, 2020, 56(23): 3433-3436.  (研究论文,SCI 二 期刊,IF6.0654)

30. Yang Y, Xiao Y, Zhang L, et al. Encaging Co nanoparticle in atomic CoN4-dispersed graphite nanopocket evokes high oxygen reduction activity for flexible Zn-air battery[J]. Applied Catalysis B: Environment and Energy, 2024: 123792.(研究论文,SCI 一区TOP 期刊,IF22.1005)

31. Ma Y, Xiao Y, Lei C, et al. Design of Hierarchical CeO2@ Co‐Ni3S2 Catalyst for Rapid High‐Valent Ni3+ Generation and Optimized Organic Adsorption Toward Enhanced Biomass Conversion[J]. Advanced Functional Materials, e12292. Advanced Functional Materials, 2209741. (中科院 SCI 一区,top, 研究论文,IF19.000. )



通讯作者

32. Ding Y, Xu Y, Bai H, et al. Multiscale Modeling Strategy for Enhancing Electrocatalytic Activities of CuPd Alloy Nanoparticles Generated on Cu (111) Facet for C–N Coupling in Induced [Bmim][BF4] Ionic Liquid and pH-Dependent Microenvironments[J]. ACS Catalysis, 2025, 15: 14009-14020. (中科院 1区,top, 研究论文,IF13.0992. )

33. Feng, Y., Ding, Y., Liu, L., & Yi Xiao*. (2025). Enhancing Electrocatalytic Activities of High-Entropy Borides (HEBs) for C–N Coupling in Induced Cation and pH-Dependent Microenvironments via Multiscale Modeling Strategy. Inorganic Chemistry Frontiers. (中科院 2区 研究论文,IF6.3996. )

34.Yang, Y., Yang, X., Zhao, S., Liu, Z., Xiao, Y*., & Han, L*. (2025). Incorporating SnSx species for electroreduction of CO2 towards formate. Applied Surface Science 689 (2025) 162486. (研究论文,中科院二区,期刊,IF6.0998)

35. Zhou T, Shen C, Wang X, & Xiao, Y.,* et al. Predicted C–N coupling performance of lateral heterostructure interfaces between two types of layered materials for electrochemical synthesis of acetamide and Ammonia via reduction of CO2 and N2[J]. Chemical Engineering Science, 2024: 121082. (研究论文,中科院二区,化工TOP 期刊,IF4.0998)

36. Feng, Y., Li, R., Wang, X., Liu, L., & Xiao, Y. (2025). Designing plausible catalysts for synthesis of zingerone from vanillin and acetone via aldol condensation reaction on O-terminated M3C2-MXenes. Computational Materials Science, 246, 113469. (研究论文,IF3.1)

37. Zhou, T., Shen, C., Wu, Z., Lan, X., & Xiao, Y.,* Tuning the interfacial reaction environment via pH-dependent and induced ions to understand C–N bonds coupling performance in NO3− integrated CO2 reduction to carbon and nitrogen compounds over dual Cu-based N-doped carbon catalyst.Journal of Energy Chemistry, 100 (2025) 273–285.  (研究论文,中科院一区,TOP 期刊,IF14.8996)

38. Wei Xionga,b,1,*, Xingyu Fengb,1, Tao Huangb, Zhencheng Huangb, Xuanlong Heb, Jianhong Liub, Yi Xiaoc,*, Xinzhong Wanga,*, Qianling Zhangb,* Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries[J]. Journal of Materials Science & Technology, 2025, 212: 67-76. (研究论文,14.2994TOP 期刊,IF: 14.2994)

39. Xiong Z, Xiao Y*, Shen C. Screening of the Transition Metal Single Atom Anchored on α-Borophene Catalysts as a Feasible Strategy for Electrosynthesis of Urea[J]. Chemistry of Materials, 2022, 34, 21, 9402–9413. (中科院 一区,研究论文,Top 期刊,IF10.5078)

40. Chen R, Chen D, Xiao Y*. Theoretical Scanning of Bimetallic Alloy for Designing Efficient N2 Electroreduction Catalyst[J]. Materials Today Energy, 2021: 100684. (中科院 二区,通讯作者,研究论文,TOP 期刊,IF9.257)

41. Liu, Li; Yang, Lei; Zhang, Haiyang; Tuerdi, Wumaier; Shang, Zhiyong; Zhang, Jinli; Xiao Y*. Screening Strategies for Diatom Metal-Doped β-Borophene Nanosheet Catalysts for Electrochemical Synthesis of Ammonia Using Density Functional Theory[J]. Energy & Fuels, 2023.. (Energy & Fuels). (IF4.654)

42. Liu L, Xiao Y*. Theoretical exploration electrocatalytic active of spinel M2CoO4 (M= Co, Fe and Ni) as efficient catalyst for water splitting[J]. Computational Materials Science, 2021, 187: 110082. (中科院 三区,通讯作者,研究论文,IF3.5718)

43. Zhang, W., & Xiao, Y*. Mechanism of electrocatalytically active precious metal (Ni, Pd, Pt, and Ru) complexes in the graphene basal plane for ORR applications in novel fuel cells. Energy & Fuels, 34(2), (2020). 2425-2434. (中科院 三区,通讯作者,研究论文,IF4.654ESI高被引)

44. Zhang W, Wang Y, Wang J, Xiao, Y* et al. Theoretical prediction of the structural, electronic, mobility, and dynamic properties of Mo3N2T2 (T= H, O and OH) with Li adsorption feature[J]. Solid State Ionics, 2018, 325: 238-246. (中科院 三区,研究论文,IF3.785)


共同作者

45. Ding, X., Zhu, Q., Fan, Y., Yang, Y., Liu, L., Shao, Y. Xiao. Y, ... & Han, L. (2025). High-entropy V-based cathode for high-capacity and long-life aqueous zinc-ion battery. Nano Energy 136 (2025) 110701. (中科院 一区,TOP研究论文,IF17.0997).

46. Ding, X., Le, J., Yang, Y., Liu, L., Shao, Y., Xiao, Y., ... & Han, L. (2025). A high-entropy zero-strain V-based cathode for high performance aqueous zinc-ion batteries. Energy Storage Materials 76 (2025) 104098.  (中科院 一区,TOP研究论文,IF20.1992).

47. Ding, X., Zhu, Q., Yang, Y., Liu, L., Xiao, Y., Li, Y., ... & Han, L. (2024). A cation-anion synergistic doped V-based cathode for high-performance aqueous zinc ion batteries. Journal of Energy Chemistry. (中科院 一区,TOP研究论文,IF14.8996).

48. Wang X, Zhang Q, Li X, Xiao, Y. et al. Unraveling the Oxygen Vacancy–Performance Relationship in Perovskite Oxides at Atomic Precision via Precise Synthesis[J]. Journal of the American Chemical Society, 2024. (中科院 一区,TOP研究论文,IF15.6006).

49. Ding, X., Yang, X., Li, J., Yang, Y., Liu, L., Xiao, Y., & Han, L. (2024). High-Entropy and Na-Rich-Designed High-Energy-Density Na3V2 (PO4) 3/C Cathode. ACS Nano 2024, 18, 52, 35632–35643 (中科院 一区,TOP研究论文,IF15.9992).

50. Ding, X., Jiang, C., Fan, Y., Yang, Y., Liu, L., Xiao, Y., & Han, L. (2024). Slope-structure design towards high-stability P2-Na0. 67MnO2 cathode. Chemical Engineering Journal, 499, 156294. (中科院 1区,top, 研究论文,IF13.1995.

51. Ding, X., Yang, X., Yang, Y., Liu, L., Xiao, Y., & Han, L. Unsealing the multi-redox in Na3V2(PO4)3 cathode towards superb energy and power densities sodium-ion battery. Journal of Power Sources, 623, (2024). 235396.

52. Xiong W, Feng X, Xiao Y, et al. Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance[J]. Chemical Engineering Journal) 2022, 446: 137466. (中科院 1区,top, 研究论文,IF13.1995.

53. Liang, M., Liu, N., Zhang, X., Xiao, Y., Yang, J., Yu, F., & Ma, J. (2022). A Reverse‐Defect‐Engineering Strategy toward High Edge‐Nitrogen‐Doped Nanotube‐Like Carbon for High‐Capacity and Stable Sodium Ion Capture. Advanced Functional Materials, 2209741. (中 科院 1区,top, 研究论文,IF19.9246. )

54. Ningning Liu, Lanlan Yu, Baojun Liu, Fei Yu, Liqing Li, Yi Xiao, Jinhu Yang, and Jie Ma*. Ti3C2-MXene Partially Derived Hierarchical 1D/2D TiO2/Ti3C2 Heterostructure Electrode for High-Performance Capacitive Deionization. Advanced Science, 2022, 22040412022. DOI: 10.1002/advs.202204041 (中科院 1区,top, 研究论文,IF17.5213.)

55. Li-Wen Jiang, Yuan Huang, Yang Zou, Chao Meng, Yi Xiao, Hong Liu,* and Jian-Jun Wang*. Boosting the Stability of Oxygen Vacancies in α‐Co(OH)2 Nanosheets with Coordination Polyhedrons as Rivets for High‐Performance Alkaline Hydrogen Evolution Electrocatalyst[J]. Advanced Energy Materials, 2022: 2202351. (中科院 1区,top, 研究论文,IF29.6988. )

56. Guo, T., Zhang, B., Wang, X., Xiao, Y., Sun, B., Zhou, Y. N., & Wu, Y. A. (2023). Broadband Optoelectronic Synapse Enables Compact Monolithic Neuromorphic Machine Vision for Information Processing. Advanced Functional Materials, 33(49), 2303879. (中科院 1区,top, 研究论文,IF29.6988. )

57. Li W, Liu K, Feng S, Yi Xiao, et al. Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis[J]. Journal of Colloid and Interface Science, 2024, 655: 726-735. (中科院 1区,top, 研究论文,IF9.8996)

58. Cai Y M, Li Y H, Xiao Y, et al. Synergistic rare-earth yttrium single atoms and copper phosphide nanoparticles for high-selectivity ammonia electrosynthesis[J]. Rare Metals, 2024: 1-10.

59. Ding X, Miao J, Yang Y, Xiao Y, et al. A novel embedded KVO3/NC anode for high-performance lithium-ion batteries[J]. Journal of Colloid and Interface Science 676 (2024) 755–762. (研究论文,Top 期刊,IF9.5998)

60. Ding X, Hu C, Fan Y, et al. A well-designed P2-Na0. 67Mn0. 85 Al0. 05Zn0. 1O2 cathode for superior sodium-ion battery[J]. Journal of Materials Chemistry A, 2024. (研究论文,Top 期刊,IF10.7004)

61. Wang L, Chen Z, Xiao Y, et al. Stabilized Cuδ+-OH species on in situ reconstructed Cu nanoparticles for CO2-to-C2H4 conversion in neutral media[J]. Nature Communications, 2024, 15(1): 7477. (研究论文,Top 期刊,IF14.7007)

62. Zhang L, Hu H, Sun C, et al. Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis[J]. Nature Communications, 2024, 15(1): 7179. (研究论文,Top 期刊,IF14.7007)

63. Mwankemwa N, Chen S, Gao S, Xiao Y et al. First-principles calculations to investigate the electronic and optical properties of (MoS2) 4-n/(MoSSe) n lateral heterostructure[J]. Journal of Physics and Chemistry of Solids, 2021: 110049. (中科院 三区,研究论文,IF4.383)

64. Wang J, Zhang W, Wu Q, Xiao Y et al. The electronic and optical properties of Au decorated (101¯4) dolomite surface: A first principles calculations[J]. Results in Physics, 2021, 21: 103827. (中科院 二区,研究论文,IF4.565)

65. Zhang X, Song Y, Zhang F, Xiao Y, et al. The electronic properties of hydrogenated Janus MoSSe monolayer: a first principles investigation[J]. Materials Research Express, 2019, 6(10): 105055. (中科院 四区,研究论文,IF2.025)

66. Eom T H, Xiao Y, Han J I, et al. Electrical structure, magnetic polaron and lithium ion dynamics in four mixed-metal oxide multiple-phase electrode cathode material for Li ion batteries from density functional theory study[J]. Computational Materials Science, 2017, 132: 92-103. (中 科院 三区,研究论文,IF3.5718)

67. Lu, F., Wei, W., Shi, Q., Wang, N., Xiao, Y., & Li, Z. (2023). Glycol 400 assisted preparation of high contact surface TiO2/GO nanocomposites for photocatalytic degradation rhodamine B. Nanotechnology, 34(46), 465602.

68 Wang, L., Yao, X., Xiao, Y., Du, C., Wang, X., Akhmetzyanov, D., ... & Wu, Y. A. (2024). Enhanced CO2-to-CH4 conversion via grain boundary oxidation effect in CuAg systems. Chemical Engineering Journal, 500, 156728.

69 Wang, X., Zhang, Q., Li, X., Meng, F., Chen, S., Chen, Z., ... Xiao, Y & Wu, Y. A. (2024). Unraveling the Oxygen Vacancy–Performance Relationship in Perovskite Oxides at Atomic Precision via Precise Synthesis. Journal of the American Chemical Society. 146, 50, 34364–34373

70 Ding X, Yang X, Yang Y, Xiao Y et al. A high-entropy-designed cathode with V5+-V2+ multi-redox for high energy density sodium-ion batteries[J]. Journal of Energy Chemistry, 2024.

71 Ding X, Zhu Q, Fan Y, Xiao Y, et al. High-entropy V-based cathode for high-capacity and long-life aqueous zinc-ion battery[J]. Nano Energy, 2025: 110701.

72 Zhang L, Li M, Sun C, Xiao Y. et al. A Hydrazine‒Water Galvanic Cell‐Inspired Self‐Powered High‐Rate Hydrogen Production via Overall Hydrazine Electrosplitting[J]. Advanced Functional Materials, 2024: 2420163.

73. Chen Z and Xiao Y et al. Monitoring chalcogenide ions-guided in-situ transform active sites of tailored bismuth electrocatalysts for CO2 reduction to formate. Proceedings of the National Academy of Sciences (PNAS), PNAS 2025 Vol. 122 No. 10 e2420922122

74. Zhang, L., Cai, Y., Li, Y., Sun, C., Xiao, Y., Yang, Y., ... & Han, L. (2025). Unlocking high-current-density nitrate reduction and formaldehyde oxidation synergy for scalable ammonia production and fixation. Energy & Environmental Science. (DOI: 10.1039/D4EE04382K)

75.Dechao Chen, Yimeng Cai, Yi Xiao, Chengqiang Wang, Yong Li, KeMa, Dongdong Xiao, Hsiao-Tsu Wang, Chi-FengLee, Linjie Zhang, HirofumiIshii, Yu-Cheng Shao, Nozomu Hiraoka, Lili Han, *Xueming Liu,*and Huolin L.Xin. Electrosynthesis of Urea on High-Density Ga─Y Dual-Atom Catalyst via Cross-Tuning; Adv.Mater. 2025,2420593.

76. Ding X, Jiang C, Li P, Yi Xiao et al. Ultra large ion substitute resists Jahn-Teller effects towards high-performance Mn-based P2-Na0. 67Ni0. 33Mn0. 67O2 cathode[J]. Nano Today, 2026, 66: 102925.




下一条:霍开富课题组

关闭